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Preface
One million lines of Python code. Through them, the transformers library supports more

than 400 model architectures, from state-of-the-art LLMs and VLMs to specialized models for
audio, video, and tables.

Built on PyTorch , it's a foundational tool for modern LLM usage, research, education, and
tens of thousands of other open-source projects. Each Al model is added by the community,
harmonized into a consistent interface, and tested daily on a Cl to ensure reproducibility.

This scale presents a monumental engineering challenge.
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How do you keep such a ship afloat, made of so many moving, unrelated parts, contributed to

by a buzzing hivemind? Especially as the pace of ML research accelerates?

We receive constant feedback on everything from function signatures with hundreds of
arguments to duplicated code and optimization concerns, and we listen to all of it, or try to. The
library’s usage keeps on growing, and we are a small team of maintainers and contributors,
backed by hundreds of open-source community members. We continue to support all new

models and expect to do so for the foreseeable future.

This post dissects the design philosophy that makes this possible. It's the result of an

evolution from our older principles, detailed on our previous page, as well as its
accompanying . More recently (and we strongly recommend the read) we
publish a blog post about , focusing on what makes the

library faster today. All of these developments are only made possible thanks to these
principles.

We formalize and articulate the “tenets” that have been guiding our development, demonstrate
how they are implemented in code, and show the measurable impact they have on the library’s

sustainability and growth.

For any OSS maintainer, power user, or contributor, this is the map to understanding, using,
and building upon transformers , but not only: any project of comparable size will require you
to make deep choices, not only on design and choice of abstraction, but on the very mindset of
the software you are building. These tenets may or may not be applicable to your project, but

they provide a glimpse on how we work that could be helpful or inspirational.
Conventions used throughout this post:
will have their summary available on hover.
to articles will help you solidify your knowledge.

are available as you go - scroll, zoom, drag away to explore

them.

Breadcrumb boxes summarize what you just learned, connect it to the tenets, and point to
what’s coming Next. Think of them as narrative signposts to help you keep track.

We get started by enumerating the tenets. Then we look at concrete examples that show how
they shape our decision-making. These examples are necessarily detailed, and sometimes
complex, because they illustrate the challenges to maintain and grow a large codebase that
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caters to multiple collectives, has millions of users, hundreds of contributors, and always

strives for simplicity and consistency.

The core tenets of transformers

We summarize the foundations on which we’ve built everything, and write the “tenets” of the
library. They behave like software interfaces, hence it is crucial that they are explicitly written
down. However opinionated they are, they have evolved over time.

These principles were not decided in a vacuum. The library evolved towards them, and once

they emerged, they were recognized as critical.

We aim to be the . This is not a tenet, but
something that guides our decisions. Model implementations should be reliable,
reproducible, and faithful to the original performances.

This overarching guideline ensures quality and reproducibility across all models in the library.

All inference and training core logic has to be visible, toptobottom, to maximize
each model’s hackability.

Every model should be understandable and hackable by reading a single file from top to
bottom.

Optimize for reading, diff-ing, and tweaking, our users are power users. Variables
can be explicit, full words, even several words, readability is primordial.
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Code quality matters as much as functionality - optimize for human readers, not just

computers.

If it's model behavior, keep it in the file; abstractions are only for generic infra.

Model-specific logic belongs in the model file, not hidden behind abstractions.

Copy when it helps users; keep successors in sync without centralizing behavior.
Evolution:

With the introduction and global adoption of transformers, we do not
repeat any logic in the modular files, but end user files remain faithful to the
original tenet.

Strategic duplication can improve readability and maintainability when done thoughtfully.

Config, model, pre-processing; from_pretrained, save_pretrained, push_to_hub. We
want the least amount of codepaths. Reading should be obvious, configurations
should be obvious.

Keep the public interface simple and predictable, users should know what to expect.

Evolve by additive standardization, never break public APIs.

Any artifact that was once on the hub and worked with transformers should be
usable indefinitely with the same interface. Further, public methods should not
change to avoid breaking dependencies.



Once something is public, it stays public, evolution through addition, not breaking changes.

Same argument names, same outputs, hidden states and attentions exposed,
enforced by tests. This is a goal as well as a tenet.

All models should feel familiar - consistent interfaces reduce cognitive load.

When a PR is merged, it is because the contribution is worthwhile, and because the
transformers team finds the design of the contribution to be aligned with the tenets.

Does all the code in the library strictly follow these tenets? No. The library is a gigantic house
with connected nooks, corridors, crannies everywhere, built by thousands of different workers.
We try to make it so all the code added is compliant, because if we fail and merge it, we cannot
change it lest we break

To see what constitutes adherence to the tenets, let’s take the example of code repetition.

The following function, essential to the implementation of can
be found in more than 70 modeling_<file>.py across src/transformers/models/. Why
keep it? Because we want all the model logic to be . In order to
do that, we

def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : X.shape[-1] // 2]
x2 = X[..., X.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)

We want all models to have self-contained modeling code.

Each core functionality must be in the modeling code, every non-core functionality can be
outside of it.

This comes as a great cost. Enter the #Copied from... mechanism: for a long time, these
comments were indicating that some code was copied from another model, saving time both for
the reviewers and for the Cl. But the LOC count kept creeping up. Each new model copied over

hundreds of lines that we considered largely boilerplate, yet, we could not remove them.
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We need to separate both principles that were so far intertwined, and

What's the solution to this?

TL;DR: Read the code in one place, . Keep semantics local (
). Allow strategic duplication for end users ( ). Keep the public surface
minimal and stable ( , , ).

Next: how modular transformers honor these while removing boilerplate.

Modular transformers

Transformers is an opinionated library. The previous page, and the
were already pointing at the drawbacks mentioned just above, which have been iteratively

addressed. modular to allow a form of inheritance without
breaking
We amended the principle of by progressively removing all pieces of code that were

“copied from” another file.

It works as follows. In order to contribute a model, GLM for instance, we define a modular_
file that can inherit from any function across all other modeling, configuration and processor
files already existing in the library. The modular file can use inheritance across models: and

then, it is unravelled into a fully functional modeling file.
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MODULAR_GLM.PY

class GImMLP(Phi3MLP):
pass

class GlmAttention(LlamaAttention):
def __init__ (self, config, layer_idx=None):
super().__init__ (config, layer_idx)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dinm,
config.hidden_size,
bias=False

class GlmForCausallLM(LlamaForCausallLM):
pass

MODELING_GLM.PY (AUTO-EXPANDED)

class GImMLP(nn.Module):
def __init_ (self, config):

super().__init__ ()

self.config = config

self.gate_up_proj = nn.Linear(
config.hidden_size,
2 * config.intermediate_size,
bias=False

)

self.down_proj = nn.Linear(
config.intermediate_size,
config.hidden_size,
bias=False

Left: Clean modular definition with inheritance. Right: Auto-expanded version with all inherited functionality
visible.

As you can see, we can define a new model as a modular combination of fragments taken from

others.



You might think “well that’s just how inheritance works”. The crucial difference is that we do
visibly what is essentially the compiler's job: by unrolling the inheritances, we make visible all of
the modeling code, keeping it

You can see below the difference between GlmAttention and LlamaAttention , with the
latter having been copied with minimal changes.

Figure 1: Comparison of attention implementations between Llama and GLM, showing code reuse with

minimal modifications.

What is the consequence? When adding a model, we do not need to go over the entire modeling
file. The modular (left side above) is enough.

When AutoModel.from_pretrained(...) is called, itis indeed the modeling (right side) that
is run, and all the tests run on the modeling code.

More importantly, the auto-generated modeling file is what users read to understand the code,

what they step through in their debuggers and what they hack for their needs.

What does that give us?

TL;DR: A small modular_*.py declares reuse; the expanded modeling file stays visible and
. Reviewers and contributors maintain the shard, not the repetition.

Next: the measurable effect on effective LOC and maintenance cost.

A maintainable control surface

The effect of modular can be measured in lines of code (LOC). If a model only has a modeling
file, we add its LOC count. However, if a model has a modular_*.py and a corresponding
automatically generated modeling_*.py , we only count the LOC under the modular file. The
modeling code has no maintenance cost as it is strictly dependent on the modular file.

That gives an “effective LOC” curve: the maintenance surface.



Measured on git history, raw modeling_*.py grew at ~362 LOC/day before modular; counting
only modular shards yields ~25 LOC/day after — about 15% lower. The effective curve (blue line
below) represents the maintenance surface today: what maintainers actually read and review.

Less code to hand-maintain means fewer places to break. Naturally LOC is not a direct measure
of complexity, but they correlate in review effort and change risk.
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The blue line (effective) is the sum of the red + green, whereas the yellow would have been the
progression without modular. We can see that the maintenance surface is essentially constant
(in LOC) since the implementation of modular . If you zoom in, you’ll notice there’s a sharp

drop near the end, it’s essentially due to us library-

wide.
But this was not the only effort that allowed us to reduce maintenance load.

We recently underwent a deep refactor of the attention implementation. You've likely heard

about and its several variants.
The attention computation itself happens at a lower level of abstraction than the model itself.

However, we were adding specific torch operations for each backend (sdpa, the several flash-
attention iterations, flex attention) but it isn’t a . Next section explains what

we do.

Evidence: effective (i.e., maintainable) LOC growth drops ~15x when counting shards instead of
expanded modeling files. Less code to read, fewer places to break.
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Next: how the attention interface stays standard without hiding semantics.

External Attention classes

The solution for the “attention abstraction problem” was to move to a standard
that allows the following:

The naive implementation of attention, called “eager”, is available by default. We use a
Callable called eager_attention_forward , which can run as long as the user has PyTorch
installed — which is a requirement any way.

Instead of using a class interface and a class hierarchy, we just moved to a function interface.
When a more complex attention implementation is needed, we use other Callables, including
much faster kernel bindings when available. The decision to use a different attention
implementation is based on the model configuration file we download from the Hub, and it can
also be overridden by the user.

This is a clear example that that we prefer an interface that is . To
be completely precise, this is what the interface selection looks like in transformers code:

attention_interface: Callable = eager_attention_forward

if self.config._attn_implementation != "eager":
attention_interface =

ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

Having the attention interfaces functionalized allows to do dynamic switching of attentions as
well, increasing their . Another strength of the new attention interface is the
possibility to enforce specific kwargs, which are needed by kernel providers and other

dependencies.
Backend integrations sometimes require specific kwargs.

We know that kwargs are often a necessary evil that plagues tools with widespread
compatibility; and it is something we have aimed to reduce, and continue to reduce in order to
improve readability - with them, the current system is a

We reduce that surface and document expectations; where flexibility is necessary, we plan to
use typing.Annotated to convey shapes and invariants without constraining integrations.

Such an implementation could look like this in the future:
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from typing import Annotated

MyModelOutputAnnotated = Annotated[MyModelOutput, "shape: (B, C, H, W)"]

Attention semantics remain in eager_attention_forward ; faster backends are opt-in via
config. We inform via types/annotations rather than enforce rigid kwargs, preserving
integrations.

Next: parallel partitioning is declared as a plan, not through model surgery.

Configurable Tensor Parallelism

If you're not familiar with the different flavours of parallelism, | recommend checking out
first, and of course a full is always
recommended.

The essential part is that, as , when tensors get too large to fit on
a single GPU, they are sliced along a particular dimension and every slice is sent to a different
GPU.

Why does it matter?
Because we want to avoid code modifications that are unrelated to the model.

We choose to place the level of abstraction higher than the device placement: a matrix
multiplication - a nn.Linear layer - should be always expressed in the same way, regardless
of how it is placed.

Hence, we want to touch the modeling code , and only modify it when
architectural changes are involved — not depending on the way you run it. For tensor parallelism,
we simply specify a tp_plan :
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# In the model's config (example: ERNIE 4.5-style decoder blocks)
base_model_tp_plan = {

"layers.*.self_attn.g_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",

}

# Runtime

import torch
from transformers import AutoModelForCausallLM, AutoTokenizer

model_id = "your/model-or-local-checkpoint"
model = AutoModelForCausallLM.from_pretrained( # <-- will automatically map
to the plan defined above

model_id,

dtype=torch.bfloat16,

)

tok = AutoTokenizer.from_pretrained(model_id)
inputs = tok("Hello", return_tensors="pt").to(model.device)
out = model(**inputs)

The plan is written once, saved as part of the config and passed to .from_pretrained() . It
maps module name patterns to partitioning strategies. Strategies are resolved by the internal
ParallelInterface , which wires to sharding implementations ColwiseParallel ,

RowwiseParallel , packed variants, and so on.
The alternative would be to modify classes depending on supported types of parallelism.

The tp_plan solution allows users to run the same model on a single GPU, or distribute it
using multiple processes per node, e.g. 4 GPUs:

torchrun --nproc-per-node 4 demo.py

Semantics stay in the model (a Linear stays a Linear), parallelization is orthogonal and declared
via strings: “colwise” splits columns of weights/bias across ranks; “rowwise” splits rows;
packed variants shard fused weights; The mapping keys accept glob patterns like
layers.*.mlp.down_proj to target repeated submodules.

Parallelization is specified in the configuration ( tp_plan ), not through edits to Linear s. Glob
patterns target repeated blocks; modeling semantics stay intact.



Next: per-layer attention/caching schedules declared in config, not hardcoded.

Layers, attentions and caches

Following the same logic, the nature of attention and caching per layer of a model should not be
hardcoded. We should be able to specify in a configuration-based fashion how each layer is
implemented. Thus we define a mapping that can be then

ALLOWED_LAYER_TYPES = (
"full_attention",
"sliding_attention",
"chunked_attention",
"linear_attention",

and the configuration can be explicit about which attention type is in which layer. See, for
example, , which alternates sliding and full attention:

"layer_types": [
"sliding_attention",
"full_attention",

"sliding_attention",
"full attention"

1

This is to implement on the user side, and allows to keep the modeling code
untouched. It is also easy to tweak.

Allowed layer types are explicit; schedules (e.g., sliding/full alternation) live in config. This keeps
the file readable and easy to tweak.

Next: speedups come from kernels that don’t change semantics.

Community Kernels

The same principle extends to normalization, activation, and other code paths. The model

defines semantics; a kernel defines how to execute them faster. We annotate the module to
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borrow a communityprovided forward, keeping a

@use_kernel_forward_from_hub("RMSNorm")
class GlmRMSNorm(nn.Module):

This also opens another contribution path: GPU specialists can contribute optimized kernels to

the , and have them immediately available to use in  transformers and other
libraries. You can check the to learn more about it!

Even more resources have been added, like the formidable with its connected
resources to and

Models define semantics; kernels define how to run them faster. Use decorations to borrow
community forwards while keeping a consistent public surface.

Next: what modularity looks like across the repo.

A Modular State

With modular transformers, we have a form of inheritance in our codebase. Some models
become standards, and model contributors are given the opportunity to define standards.
Pushing the boundaries of scientific knowledge can translate into the boundaries of engineering
if this effort is made, and we’re striving for it. It's hard to conceptualize very large libraries and
how their components interact with each other, regardless of your cognitive abilities for
abstractions. So | want to take a look at the current state of modularity across the repository.
How many models are defined using components of others?

To get this graph, | use the heuristic of modular inheritance.

1. Does this model have a modular file?
2. In this modular file, what models, configurations and processings are imported?

3. Recurse through the model list that way.

So what do we see?

(Graph reading guide: nodes are models; edges are modular imports).
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Check out the (tab “dependency graph”, hit “build graph”) for better

manipulation and exploration.

[Interactive content - view online]

Let’s walk through some sections of this graph together. First, Llama is a basis and an

influence for many models, and it is very visible.
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Figure 2: Llama as a central model influencing many other models in the dependency graph.
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The models linked sometimes pull components from other models than 1lama of course.

Radically different architectures such as mamba have spawned their own dependency subgraph.

Audio models form sparser archipelagos, see for instance wav2vec2 which is a significant basis
for a dozen of them.

wav2vec2_bert
hubert

unispeech_sat

wav2vec2_conformer

wav2vec2

data2vec _Sew

. wavilm

unispeesh

Figure 3: Cluster of audio architectures based on wav2vec?2, forming a specialized archipelago.

In the case of VLMs which have massively grown in popularity since 2024, there’s far too many
vision-based architectures that are not yet defined as modulars of other existing archs. In other
words, there is no strong reference point in terms of software for vision models.

As you can see, there is a small DETR island:



hgnet_v2

rt_detr

rt_detr_v2

Figure 4: Small DETR archipelago for vision models, less centralized than Llama for text.

There is also a little Ilava pocket, and so on, but it’'s not comparable to the centrality observed

for llama.

Another problem is, this visualization only shows modular models. Several models still do NOT
have a modular file. If we zoom out significantly, we can see them, the red nodes are models

that do not have a modular file yet.




grounding_dino

ifstructblip

idefics3

milama

Figure 5: Overview showing red nodes (models without modular files) to be modularized.

Hence the next question, and how do we identify modularisable models?

Llama-lineage is a hub; several VLMs remain islands — engineering opportunity for shared
parents. Next: timeline + similarity signals to spot modularisable candidates.

Many models, but not enough yet, are alike

Next, | looked into Jaccard similarity, which we use to measure set differences. | know that
code is more than a set of characters stringed together. | also used code embedding models to
check out code similarities, and it yielded better results, for the needs of this blog post | will

stick to Jaccard index.



It is interesting, for that, to look at when we deployed this modular logic and what was its
rippling effect on the library. You can check the to play around, but the gist is:
adding modular allowed to connect more and more models to solid reference points. We have a
lot of gaps to fill in still.

Zoom out below - it’s full of models. You can click on a node to see its connections better, or
use the text box to search for a model. You can use the (tab “timeline”, hit “build

timeline”) for better exploration.

[Interactive content - view online]

Let’s look at a few highly connected models. Let’s start by the foundational work of

Modular Logic Added

aya_vision
f ovis2
llava_onevision
florence2

mistral3 Ifm2_vl

arigd0t-pcrd perception_Im
llava_next \ internvl

vipllava llava_next_video

vigleo_llava paligemma

Figure 6: LLaVA and its variants in the timeline, with llava_video as a candidate for modularization.

You see that 1lava_video is a red node, connected by a red edge to 1lava : it's a candidate,
something that we can /ikely remodularize, but being much

more readable with
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The same can be identified with the classical encoders family, centered on BERT :

Here roberta, xlm_roberta, ernie are modular s of BERT, while models like

mobilebert are likely candidates.

albert

XIlm_roberta_xI

. ; | ernie
mobilebert bert_generation ® rembert .

electra beri‘

roformer
roberta megatron_bert

Figure 7: Family of classical encoders centered on BERT, with several models already modularized.

Similarity metrics (Jaccard index or embeddings) surfaces likely parents; the timeline shows
consolidation after modular landed. Red nodes/edges = candidates (e.g., llava_video —
1lava ) for refactors that preserve behavior.

Next: concrete VLM choices that avoid leaky abstractions.

VLM improvements, avoiding abstraction

We don’t yet have a cookbook for common VLM patterns (image token scatter, multitower
encoders, cross-attention bridges). This is one of the main improvement points where we can
work.

For instance, we thought of abstracting away the mixing of inputs_embeds , the tensor fed into
an LLM decoder in 95% of the existing VLMs. It would have looked like something like



class InputsEmbeddingMixerMixin(nn.Module):
#

But this is not an abstraction . Embedding mixin is part of the model, removing it would break

it. A user opening modeling_qwen2.5_ vl (check out the Qwen2.5VL collection ) should
not have to go to another file to understand how it works.

What is the current state of these “abstractions” across the codebase? You will see all the
imports around a modeling file, here Gemma3n
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set_inpylembeddings
¥ -

Continuous
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/ /| tase_model_prefix e ‘
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Figure 8: Gemma3n import graph showing dependency complexity, with GenerationMixin very central.

As you can see, the GenerationMixin node is already very heavy. It encompasses all of the
utilities around .generate , it is second only to nn.Module . That means every decision we
make to abstract something else has to be extremely careful.

The following Pull request to standardize placeholder masking " is a good example of what
kind of changes are acceptable. In a VLM, we always need to insert embeddings from various
encoders at various positions, so we can have a function to do it. For Qwen2 VL, for instance, it
will look like this:


https://github.com/huggingface/transformers/blob/b3bd815786c36f4e6c3791fae0a96cac86658b32/src/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py#L1358
https://github.com/huggingface/transformers/blob/b3bd815786c36f4e6c3791fae0a96cac86658b32/src/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py#L1358
https://github.com/huggingface/transformers/blob/b3bd815786c36f4e6c3791fae0a96cac86658b32/src/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py#L1358
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https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5
https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5
https://huggingface.co/google/gemma-3n-E4B-it
https://huggingface.co/google/gemma-3n-E4B-it
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https://github.com/huggingface/transformers/pull/39777
https://github.com/huggingface/transformers/pull/39777
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def get_placeholder_mask(
self,
input_ids: torch.LongTensor,
inputs_embeds: torch.FloatTensor,
image_features: torch.FloatTensor = None,
video_features: torch.FloatTensor None,

Obtains multimodal placeholdr mask from “input_ids® or
“inputs_embeds’, and checks that the placeholder token count is
equal to the length of multimodal features. If the lengths are
different, an error is raised.
if input_ids is None:
special_image_mask = inputs_embeds ==
self.get_input_embeddings()(
torch.tensor(self.config.image_token_id, dtype=torch.long,
device=inputs_embeds.device)
)
special_image_mask special_image_mask.all(-1)
special_video_mask = inputs_embeds ==
self.get_input_embeddings()(
torch.tensor(self.config.video_token_id, dtype=torch.long,
device=inputs_embeds.device)
)
special_video_mask = special_video_mask.all(-1)
else:

special_image_mask = input_ids == self.config.image_token_id
special_video_mask = input_ids == self.config.video_token_id

n_image_tokens = special_image_mask.sum()

special_image_mask =
special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds
.device)

if image_features is not None and
inputs_embeds[special_image_mask].numel() !'= image_features.numel():

raise ValueError(
f"Image features and image tokens do not match: tokens:

{n_image_tokens}, features {image_features.shape[0]}"

)

n_video_tokens = special_video_mask.sum()
special_video_mask =
special_video_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds
.device)
if video_features is not None and
inputs_embeds[special_video_mask].numel() !'= video_features.numel():
raise ValueError(



f"Videos features and video tokens do not match: tokens:
{n_video_tokens}, features {video_features.shape[0]}"

)

return special_image_mask, special_video_mask

But this is within the modeling file, not in the PreTrainedModel base class. It does not move

away from it, because it'd break the

What do we conclude? Going forward, we should aim for VLMs to have a form of centrality
similar to that of Llama for text-only models. This centrality should not be achieved at the cost
of abstracting and hiding away crucial inner workings of said models.

Keep VLM embedding mix in the modeling file (semantics), standardize safe helpers (e.g.,
placeholder masking), don’t migrate behavior to PreTrainedModel . Next: pipeline-level wins

that came from PyTorch-first choices (fast processors).

On image processing and processors

Deciding to become a torch -first library meant relieving a tremendous amount of support for
jax and TensorFlow , and it also meant that we could be more lenient about the amount of
torch-dependent utilities that we were able to accept. One of these is the fast processing of
images. Where inputs were once minimally assumed to be ndarrays, enforcing native torch

and torchvision inputs allowed us to massively improve processing speed for each model.

The gains in performance are immense, up to 20x speedup for most models when using

compiled torchvision ops. Furthermore, let us run the whole pipeline solely on GPU.



No code changes, just more speed g

Fast Image Processors are now the default for Qwen-VL-based models in
@Transformers, making the image preprocessing step
up to 26x faster automatically.
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Preprocessing performance for a 512x512 image with 'Qwen/Qwen2.5-VL-3B-Instruct'.
Performed on a Nvidia A10 GPU.

Figure 9: Performance gains of fast image processors, up to 20x acceleration with compiled torchvision.

PyTorch-first lets processors assume torch/torchvision and run the whole pipeline on GPU; big

per-model speedups.

Next: how this lowers friction for contributors and downstream users.




Reduce barrier to entry/contribution

This is an overall objective: there’s no  transformers without its community.

Having a framework means forcing users into it. It restrains flexibility and creativity, which are

the fertile soil for new ideas to grow.

Among the most valuable contributions to transformers is of course the addition of new
models. Recently, , Which prompted the addition of many new
features to the library in order to support

A second one is the ability to fine-tune and pipeline these models into many other softwares.

Check here on the hub how many finetunes are registered for , despite its size!

The shape of a contribution: add a model (or variant) with a small modular shard; the community
and serving stacks pick it up immediately. Popularity trends (encoders/embeddings) guide where

we invest.

Next: power tools enabled by a consistent API.

Models popularity

Talking about dependencies, we can take a look at the number of downloads as a measure of
popularity. One thing we see is the prominence of encoders, despite the apparent prevalence of
decoder LLMs. The reason is that encoders are used to generate embeddings, which have
multiple downstream uses. Just check out for a modern recap. Hence, it
is vital to keep the encoders portion of the library viable, usable, fine-tunable.
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As the codebase grows, we need to maintain it in coordination with our friend
. Retrieval use-cases, smart databases, FAISS-based

indexing rely on it, and thus indirectly on transformers.

In that regard, we DO want to be a modular toolbox, being enough and well
documented enough so any ML/Al developer can use transformers without having to think
about it. We aim to reduce the cognitive load brought about by model development, not

increase it.

So, how do these design choices, these “tenets” influence development of models and overall

usage of transformers?

Encoders remain critical for embeddings and retrieval; maintaining them well benefits the
broader ecosystem (e.g., Sentence Transformers, FAISS).

Next: dev tools that leverage unified attention APIls and PyTorch-only internals.

A surgical toolbox for model development

Transformers provides many tools that can help you add a new architecture, understand the
inner workings of a model, as well as the library itself.

Attention visualisation

All models have the same API for attention computation, thanks to

This uniformity allows us to build cool tools to visualize the inner workings of the attention

mechanism.


https://huggingface.co/sentence-transformers
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https://huggingface.co/sentence-transformers

One particular piece of machinery is the attention mask . Here you see the famous
bidirectional attention pattern for the whole prefix (text + image) in PaliGemma and all
Gemma2+ models, contrasting with the usual “causal-only” models.

® @ attention-mask-visualizer

ATTN MASK - GPT-2 (causal)
Tokens: [The, cat, sat, on, the, mat]
Legend: x = can attend, . = masked (future)

The cat sat on the mat
X

X
X
X
X
X

ATTN MASK - PaliGemma-style (bidirectional prefix + causal suffix)
Prefix: [<i@> <i1> <i2> <i3> <i4> What is this]

Suffix: [A great duck]

Legend: v = can attend, X = cannot

<i0><i1><i2><i3><i4> What is this | great duck

D N U N N O N N
D U U NG N U N N
X X X X X X X X
X X X X X X X X
X X X X X X X X

Uniform attention APls enable cross-model diagnostics (e.g., PaliGemma prefix bidirectionality vs

causal).

Next: whole-model tracing for ports and regressions.

Logging entire model activations



Because everything is PyTorch, we can easily when we want to add it to
transformers. We now have a power-user tool for porting or adding models, that wraps a forward
pass, intercepts every submodule call, and logs shapes, dtypes, and sample statistics of
inputs/outputs to nested JSON.

It just works with PyTorch models and is especially useful when aligning outputs with a

reference implementation, to match our

Figure 10: Model debugger interface intercepting calls and logging statistics in nested JSON.

Forward interception and nested JSON logging align ports to reference implementations,
reinforcing “Source of Truth.”

Next: CUDA warmup reduces load-time without touching modeling semantics.

Cooking faster CUDA warmups

Having a clean external API allows us to work on the . One
of a few recent additions is the CUDA warmup via caching_allocator_warmup , which
dramatically improves loading times by pre-allocating GPU memory to avoid malloc bottlenecks
during model loading. It can achieve a 7x speedup factor for an 8B model, or 6x for a 32B one,
as you can check in !


https://huggingface.co/docs/transformers/internal/model_debugging_utils
https://huggingface.co/docs/transformers/internal/model_debugging_utils
https://huggingface.co/docs/transformers/internal/model_debugging_utils
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Mem allocation patterns during model loading



Start Animation

0.00s

Layers loaded: 0/10

Individual Allocations:
Each model layer triggers a separate cudaMalloc() call, creating memory fragmentation and
allocation overhead.

W Grey "malloc" = Memory allocation overhead
Green "data" = Actual layer data loading

0.00s

Layers loaded: 0/10

Pre-allocated Memory Pool




Pre-allocated Pool:
The warmup function calculates total memory needed and makes ONE large allocation.
Subsequent layers load directly into this pool, eliminating malloc overhead.

Container = Single large malloc (warmup)

@ Progress bar = Layer data loading (no malloc needed)

It's hard to overstate how much of a lifesaver that is when you’re trying to load a model as fast
as possible, as it’s the narrowest bottleneck for your iteration speed.

Pre-allocating GPU memory removes malloc spikes (e.g., 7x for 8B, 6x for 32B in the referenced
PR).

Next: consistent interfaces allow transformers-serve.

Transformers-serve and continuous batching

Having all these models readily available and sharing the same interface allows us to
implement transformers-serve, a CLI tool to expose models through a standard OpenAl http API.

transformers serve

curl -X POST http://localhost:8000/v1l/chat/completions \
-H "Content-Type: application/json" \

-d '"{"messages": [{"role": "system", "content": "hello"}], "temperature":
0.9, "max_tokens": 1000, "stream": true, "model": "Qwen/Qwen2.5-0.5B-
Instruct"}'

transformers-serve uses continuous batching (see and also ) for

better GPU utilization, and is very much linked to the great work of vLLM with the
paged attention kernel - a further justification of

transformers-serve is not meant for user-facing production services, tools like vLLM or
SGLang are super optimized for that, but it's useful for several use cases:

¢ Quickly verify that your model is compatible with continuous batching and paged attention.

¢ Run ad-hoc vibe tests on any model, without worrying to deploy anything.


https://github.com/huggingface/transformers/pull/38085
https://github.com/huggingface/transformers/pull/38085
https://github.com/huggingface/transformers/pull/38085
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¢ Run evaluations efficiently, again without having to spend a lot of time engineering your
infrastructure.

For model deployment, check or roll your solution using any of the
excellent serving libraries.

OpenAl-compatible surface + continuous batching; kernels/backends slot in because the
modeling API stayed stable.

Next: reuse across vLLM/SGLang relies on the same consistency.

Community reusability

The transformers-serve CLI is built on transformers, for sure, but the library is made first and
foremost to be reused at large by the open-source ecosystem.

Adding a model to transformers means:

¢ having it immediately available to the community

* having it immediately usable in vLLM, , and so on without additional code. In the
case of VLLM, transformers was added as a backend to run models on vLLM, which
optimizes throughput/latency on top of existing transformers architectures

¢ being the reference code for implementations in MLX, Ilama.cpp and other libraries.

This further cements the need for a : we are a backend and a
reference, and there’s more software than us to handle serving. At the time of writing, more
effort is done in that direction. We already have compatible configs for VLMs for vLLM (say that
three times fast), check , and here for , for
instance.

Being a good backend consumer requires a consistent public surface; modular shards and
configs make that stability practical.

Next: what changes in v without breaking the promise of visible semantics.
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A Pact with the Community and what is coming next

The next major version of transformers is just around the corner (and will have another blog
post to its name when it comes out). When vb is released, we aim to keep

as solid as possible. The changes we make now are in service of that goal.

We will lean further into a modular toolbox, not a framework. You should not be forced to rewrite
modeling code. It's better when a model can inherit from PreTrainedModel and opt into
Tensor Parallel, from_pretrained , sharding, push_to_hub , loss plumbing, and external
stacks like PEFT/TRL/SGLang/vLLM.

We write this to make our design philosophy legible. Transformers is built by thousands of
contributors, but it only stays usable if its core principles are explicit and upheld. These tenets
are our pact with you: they ensure that whether you are shipping a new model, contributing an
optimized kernel, or simply debugging a forward pass, the code remains transparent and
hackable.

This is a living document, not a stone tablet. Tell us where these tenets fall short or should
evolve next. We'll keep working, and we’ll be here to share the journey with you all.
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