
Maintain the unmaintainable:
1M python loc, 400+ models

A peek into software engineering for the transformers library

AUTHORS

Pablo Montalvo, Lysandre Debut, 

Pedro Cuenca, Yoni Gozlan

AFFILIATION

Hugging Face

PUBLISHED

October 6, 2025

aimv2aimv2

altclipaltclip

apertusapertus
arceearcee

ariaaria

autoauto

aya_visionaya_vision

bambabamba

bartbart

beitbeit

bertbert

big_birdbig_bird

bigbird_p…bigbird_p…
bitbit

bitnetbitnetblip_2blip_2

bltblt

camembertcamembert

chameleonchameleon

chinese…clipchinese…clip

clipclip

clipsegclipseg

coherecohere

cohere2cohere2

cohere2_v…cohere2_v…

csmcsm

dab_detrdab_detr

dacdac

data2vecdata2vec

deepsee…v2deepsee…v2

deepsee…v3deepsee…v3

deepseek_…deepseek_…

deitdeit

detrdetr

diadia

diffllamadiffllama

dinov2dinov2

dinov2…stersdinov2…sters

dinov3_vitdinov3_vit

dogedoge

dots1dots1
emu3emu3

eomteomt

ernieernie

ernie4_5ernie4_5
ernie4…moeernie4…moe

esmesm

evollaevolla

exaone4exaone4

falcon_h1falcon_h1

flex_olmoflex_olmo

florence2florence2

gemmagemma

gemma2gemma2

gemma3gemma3

gemma3ngemma3n

glmglm

glm4glm4

glm4_moeglm4_moe

glm4vglm4v

glm4v_moeglm4v_moe

got_ocr2got_ocr2

gpt_neoxgpt_neox

gpt_ossgpt_oss

granitegranite

granite_s…granite_s…

granitemoegranitemoe
granitemo…granitemo…granitemo…granitemo…

groundi…dinogroundi…dino

heliumhelium

huberthuber

hunyuan_v…hunyuan_v…

hunyuan…moehunyuan…moe

ijepaijepa internvlinternvl

jambajamba

janusjanus

jetmoejetmoe

kyutai…textkyutai…text

lfm2lfm2

lfm2_vllfm2_vllightgluelightglue

liltlilt

llama4llama4

llavallava

llava_nextllava_next

llava…videollava…video

llava…isionllava…ision

longcat_f…longcat_f…

m2m_100m2m_100

mamba2mamba2

marianmarian

maskformermaskformer

metaclip_2metaclip_2

mimimimi

minimaxminimax

ministralministral

mistralmistral

mistral3mistral3
mixtralmixtral

mlcdmlcd

mllamamllama

mm…dinomm…dino

mobilevitmobilevit

mobilevit…mobilevit…

modernbertmodernbert

modernber

moonshinemoonshine

moshimoshi

mvpmvp

nemotronnemotron

olmoolmo

olmo2olmo2

olmo3olmo3

olmoeolmoe

ovis2ovis2

paligemmapaligemma

percept…lmpercept…lm

persimmonpersimmon

phiphi

phi3phi3

phi4…modalphi4…modal

phimoephimoe

pixtralpixtral

qwen2qwen2

qwen2…omniqwen2…omni

qwen2_5_vlqwen2_5_vl

qwen2…audioqwen2…audio

qwen2_moeqwen2_moe

qwen2_vlqwen2_vl

qwen3qwen3

qwen3_moeqwen3_moe

qwen3_nextqwen3_next

qwen3…moeqwen3…moe

qwen3_vlqwen3_vl

qwen3…moeqwen3…moe

robertaroberta

samsam

sam2sam2
sam2_videosam2_video

sam_hqsam_hq

seed_ossseed_oss

sewsew

siglipsiglip

smollm3smollm3

speech…textspeech…text

stablelmstablelm

starcoder2starcoder2

t5gemmat5gemma

e…ormer…ormer

timesfmtimesfm

timesform…timesform…

timm…kbonetimm…kbone

timm…appertimm apper

trocrtrocr

unispeechunispeech
unispee…satunispee…sa

video…llavavideo…llava

vipllavavipllava

vitvit

vit_msnvit_msn
vitdetvitdet

vivitvivit

voxtralvoxtral

waw
wav2vec…bertwav2vec…bertwav2vec2_…wav2vec2_…

wavlmwavlm

whisperwhisper

x_clipx_clip

xcodecxcodec

xglmxglm

xlm…xlm…
xlm…xlxlm…xlxmodxmod

zamba2zamba2

llamallama

aimv2aimv2

altclipaltclip

apertusapertus
arceearcee

ariaaria

autoauto

aya_visionaya_vision

bambabamba

bartbart

beitbeit

bertbert

big_birdbig_bird

bigbird_p…bigbird_p…
bitbit

bitnetbitnetblip_2blip_2

bltblt

camembertcamembert

chameleonchameleon

chinese…clipchinese…clip

clipclip

clipsegclipseg

coherecohere

cohere2cohere2

cohere2_v…cohere2_v…

csmcsm

dab_detrdab_detr

dacdac

data2vecdata2vec

deepsee…v2deepsee…v2

deepsee…v3deepsee…v3

deepseek_…deepseek_…

deitdeit

detrdetr

diadia

diffllamadiffllama

dinov2dinov2

dinov2…stersdinov2…sters

dinov3_vitdinov3_vit

dogedoge

dots1dots1
emu3emu3

eomteomt

ernieernie

ernie4_5ernie4_5
ernie4…moeernie4…moe

esmesm

evollaevolla

exaone4exaone4

falcon_h1falcon_h1

flex_olmoflex_olmo

florence2florence2

gemmagemma

gemma2gemma2

gemma3gemma3

gemma3ngemma3n

glmglm

glm4glm4

glm4_moeglm4_moe

glm4vglm4v

glm4v_moeglm4v_moe

got_ocr2got_ocr2

gpt_neoxgpt_neox

gpt_ossgpt_oss

granitegranite

granite_s…granite_s…

granitemoegranitemoe
granitemo…granitemo…granitemo…granitemo…

groundi…dinogroundi…dino

heliumhelium

huberthuber

hunyuan_v…hunyuan_v…

hunyuan…moehunyuan…moe

ijepaijepa internvlinternvl

jambajamba

janusjanus

jetmoejetmoe

kyutai…textkyutai…text

lfm2lfm2

lfm2_vllfm2_vllightgluelightglue

liltlilt

llama4llama4

llavallava

llava_nextllava_next

llava…videollava…video

llava…isionllava…ision

longcat_f…longcat_f…

m2m_100m2m_100

mamba2mamba2

marianmarian

maskformermaskformer

metaclip_2metaclip_2

mimimimi

minimaxminimax

ministralministral

mistralmistral

mistral3mistral3
mixtralmixtral

mlcdmlcd

mllamamllama

mm…dinomm…dino

mobilevitmobilevit

mobilevit…mobilevit…

modernbertmodernbert

modernber

moonshinemoonshine

moshimoshi

mvpmvp

nemotronnemotron

olmoolmo

olmo2olmo2

olmo3olmo3

olmoeolmoe

ovis2ovis2

paligemmapaligemma

percept…lmpercept…lm

persimmonpersimmon

phiphi

phi3phi3

phi4…modalphi4…modal

phimoephimoe

pixtralpixtral

qwen2qwen2

qwen2…omniqwen2…omni

qwen2_5_vlqwen2_5_vl

qwen2…audioqwen2…audio

qwen2_moeqwen2_moe

qwen2_vlqwen2_vl

qwen3qwen3

qwen3_moeqwen3_moe

qwen3_nextqwen3_next

qwen3…moeqwen3…moe

qwen3_vlqwen3_vl

qwen3…moeqwen3…moe

robertaroberta

samsam

sam2sam2
sam2_videosam2_video

sam_hqsam_hq

seed_ossseed_oss

sewsew

siglipsiglip

smollm3smollm3

speech…textspeech…text

stablelmstablelm

starcoder2starcoder2

t5gemmat5gemma

e…ormer…ormer

timesfmtimesfm

timesform…timesform…

timm…kbonetimm…kbone

timm…appertimm apper

trocrtrocr

unispeechunispeech
unispee…satunispee…sa

video…llavavideo…llava

vipllavavipllava

vitvit

vit_msnvit_msn
vitdetvitdet

vivitvivit

voxtralvoxtral

waw
wav2vec…bertwav2vec…bertwav2vec2_…wav2vec2_…

wavlmwavlm

whisperwhisper

x_clipx_clip

xcodecxcodec

xglmxglm

xlm…xlm…
xlm…xlxlm…xlxmodxmod

zamba2zamba2

llamallama

https://huggingface.co/Molbap
https://huggingface.co/Lysandre
https://huggingface.co/pcuenq
https://huggingface.co/yonigozlan
https://huggingface.co/


Table of Contents

Preface

The core tenets of transformers

Modular transformers

A maintainable control surface

External Attention classes

Configurable Tensor Parallelism

Layers, attentions and caches

Community Kernels

A Modular State

Many models, but not enough yet, are alike

VLM improvements, avoiding abstraction

On image processing and processors

Reduce barrier to entry/contribution

Models popularity

A surgical toolbox for model development

Attention visualisation

Logging entire model activations

Cooking faster CUDA warmups

Transformers-serve and continuous batching

Community reusability

A Pact with the Community and what is coming next

Preface

One million lines of Python  code. Through them, the transformers  library supports more

than 400 model architectures, from state-of-the-art LLMs and VLMs to specialized models for
audio, video, and tables.

Built on PyTorch , it’s a foundational tool for modern LLM usage, research, education, and
tens of thousands of other open-source projects. Each AI model is added by the community,

harmonized into a consistent interface, and tested daily on a CI to ensure reproducibility.

This scale presents a monumental engineering challenge.

Table of Contents

↗

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


How do you keep such a ship afloat, made of so many moving, unrelated parts, contributed to

by a buzzing hivemind? Especially as the pace of ML research accelerates?

We receive constant feedback on everything from function signatures with hundreds of

arguments to duplicated code and optimization concerns, and we listen to all of it, or try to. The
library’s usage keeps on growing, and we are a small team of maintainers and contributors,

backed by hundreds of open-source community members. We continue to support all new

models and expect to do so for the foreseeable future.

This post dissects the design philosophy that makes this possible. It’s the result of an

evolution from our older principles, detailed on our previous philosophy  page, as well as its
accompanying blog post from 2022 . More recently (and we strongly recommend the read) we

publish a blog post about recent upgrades to transformers , focusing on what makes the

library faster today. All of these developments are only made possible thanks to these
principles.

We formalize and articulate the “tenets” that have been guiding our development, demonstrate
how they are implemented in code, and show the measurable impact they have on the library’s

sustainability and growth.

For any OSS maintainer, power user, or contributor, this is the map to understanding, using,
and building upon transformers , but not only: any project of comparable size will require you

to make deep choices, not only on design and choice of abstraction, but on the very mindset of
the software you are building. These tenets may or may not be applicable to your project, but

they provide a glimpse on how we work that could be helpful or inspirational.

Conventions used throughout this post:

Tenets exemplified  will have their summary available on hover.

External links  to articles will help you solidify your knowledge.

Several interactive visualisations are available as you go - scroll, zoom, drag away to explore

them.

Breadcrumb boxes summarize what you just learned, connect it to the tenets, and point to

what’s coming Next. Think of them as narrative signposts to help you keep track.

We get started by enumerating the tenets. Then we look at concrete examples that show how

they shape our decision-making. These examples are necessarily detailed, and sometimes
complex, because they illustrate the challenges to maintain and grow a large codebase that

↗

↗

↗

↗

https://huggingface.co/docs/transformers/en/philosophy
https://huggingface.co/docs/transformers/en/philosophy
https://huggingface.co/docs/transformers/en/philosophy
https://huggingface.co/blog/transformers-design-philosophy
https://huggingface.co/blog/transformers-design-philosophy
https://huggingface.co/blog/transformers-design-philosophy
https://huggingface.co/blog/faster-transformers
https://huggingface.co/blog/faster-transformers
https://huggingface.co/blog/faster-transformers
https://huggingface.co/blog/welcome-openai-gpt-oss
https://huggingface.co/blog/welcome-openai-gpt-oss
https://huggingface.co/blog/welcome-openai-gpt-oss


caters to multiple collectives, has millions of users, hundreds of contributors, and always

strives for simplicity and consistency.

The core tenets of transformers

We summarize the foundations on which we’ve built everything, and write the “tenets” of the
library. They behave like software interfaces, hence it is crucial that they are explicitly written

down. However opinionated they are, they have evolved over time.

These principles were not decided in a vacuum. The library evolved towards them, and once

they emerged, they were recognized as critical.

Source of Truth

We aim to be the source of truth for all model definitions . This is not a tenet, but
something that guides our decisions. Model implementations should be reliable,
reproducible, and faithful to the original performances.

This overarching guideline ensures quality and reproducibility across all models in the library.

1

↗

One Model, One File

All inference and training core logic has to be visible, top‑to‑bottom, to maximize
each model’s hackability.

Every model should be understandable and hackable by reading a single file from top to
bottom.

2

Code is the Product

Optimize for reading, diff-ing, and tweaking, our users are power users. Variables
can be explicit, full words, even several words, readability is primordial.

3

https://huggingface.co/blog/transformers-model-definition
https://huggingface.co/blog/transformers-model-definition
https://huggingface.co/blog/transformers-model-definition


Code quality matters as much as functionality - optimize for human readers, not just
computers.

Standardize, Don’t Abstract

If it’s model behavior, keep it in the file; abstractions are only for generic infra.

Model-specific logic belongs in the model file, not hidden behind abstractions.

4

DRY* (DO Repeat Yourself)

Copy when it helps users; keep successors in sync without centralizing behavior.

Evolution:

With the introduction and global adoption of modular transformers, we do not
repeat any logic in the modular files, but end user files remain faithful to the
original tenet.

Strategic duplication can improve readability and maintainability when done thoughtfully.

5

Minimal User API

Config, model, pre-processing; from_pretrained, save_pretrained, push_to_hub. We
want the least amount of codepaths. Reading should be obvious, configurations
should be obvious.

Keep the public interface simple and predictable, users should know what to expect.

6

Backwards Compatibility

Evolve by additive standardization, never break public APIs.

Any artifact that was once on the hub and worked with transformers should be
usable indefinitely with the same interface. Further, public methods should not
change to avoid breaking dependencies.

7



When a PR is merged, it is because the contribution is worthwhile, and because the

transformers  team finds the design of the contribution to be aligned with the tenets.

Does all the code in the library strictly follow these tenets? No. The library is a gigantic house

with connected nooks, corridors, crannies everywhere, built by thousands of different workers.
We try to make it so all the code added is compliant, because if we fail and merge it, we cannot

change it lest we break backwards compatibility  .

To see what constitutes adherence to the tenets, let’s take the example of code repetition.

The following function, essential to the implementation of Rotary Positional Embeddings  can
be found in more than 70 modeling_<file>.py  across src/transformers/models/.  Why

keep it? Because we want all the model logic to be contained in the modeling file  . In order to

do that, we do repeat ourselves  .

We want all models to have self-contained modeling code.

Each core functionality must be in the modeling code, every non-core functionality can be
outside of it.

This comes as a great cost. Enter the #Copied from...  mechanism: for a long time, these

comments were indicating that some code was copied from another model, saving time both for
the reviewers and for the CI. But the LOC count kept creeping up. Each new model copied over

hundreds of lines that we considered largely boilerplate, yet, we could not remove them.

Once something is public, it stays public, evolution through addition, not breaking changes.

Consistent Public Surface

Same argument names, same outputs, hidden states and attentions exposed,
enforced by tests. This is a goal as well as a tenet.

All models should feel familiar - consistent interfaces reduce cognitive load.

8

↗

def rotate_half(x):1

    """Rotates half the hidden dims of the input."""2

    x1 = x[..., : x.shape[-1] // 2]3

    x2 = x[..., x.shape[-1] // 2 :]4

    return torch.cat((-x2, x1), dim=-1)5

https://huggingface.co/papers/2104.09864
https://huggingface.co/papers/2104.09864
https://huggingface.co/papers/2104.09864


We need to separate both principles that were so far intertwined, repetition  and hackabilty  .

What’s the solution to this?

TL;DR: Read the code in one place, one model, one file.  . Keep semantics local (Standardize,

Don’t Abstract). Allow strategic duplication for end users (DRY*). Keep the public surface

minimal and stable (Minimal API, Backwards Compatibility, Consistent Surface).

Next: how modular transformers honor these while removing boilerplate.

Modular transformers

Transformers is an opinionated library. The previous philosophy  page, and the blog post
were already pointing at the drawbacks mentioned just above, which have been iteratively

addressed. modular  transformers was introduced  to allow a form of inheritance without

breaking the one model, one file rule.

We amended the principle of DRY*  by progressively removing all pieces of code that were

“copied from” another file.

It works as follows. In order to contribute a model, GLM  for instance, we define a modular_

file that can inherit from any function across all other modeling, configuration and processor

files already existing in the library. The modular file can use inheritance across models: and
then, it is unravelled into a fully functional modeling file.

↗ ↗

↗

https://huggingface.co/docs/transformers/en/philosophy
https://huggingface.co/docs/transformers/en/philosophy
https://huggingface.co/docs/transformers/en/philosophy
https://huggingface.co/blog/transformers-design-philosophy
https://huggingface.co/blog/transformers-design-philosophy
https://huggingface.co/blog/transformers-design-philosophy
https://huggingface.co/docs/transformers/en/modular_transformers
https://huggingface.co/docs/transformers/en/modular_transformers
https://huggingface.co/docs/transformers/en/modular_transformers


As you can see, we can define a new model as a modular combination of fragments taken from
others.

MODULAR_GLM.PY

MODELING_GLM.PY (AUTO-EXPANDED)

class GlmMLP(Phi3MLP):1

    pass2

 3

class GlmAttention(LlamaAttention):4

    def __init__(self, config, layer_idx=None):5

        super().__init__(config, layer_idx)6

        self.o_proj = nn.Linear(7

            config.num_attention_heads * self.head_dim, 8

            config.hidden_size, 9

            bias=False10

        )11

 12

class GlmForCausalLM(LlamaForCausalLM):13

    pass14

class GlmMLP(nn.Module):1

    def __init__(self, config):2

        super().__init__()3

        self.config = config4

        self.gate_up_proj = nn.Linear(5

            config.hidden_size, 6

            2 * config.intermediate_size, 7

            bias=False8

        )9

        self.down_proj = nn.Linear(10

            config.intermediate_size, 11

            config.hidden_size, 12

            bias=False13

        )14

Left: Clean modular definition with inheritance. Right: Auto-expanded version with all inherited functionality

visible.



You might think “well that’s just how inheritance works”. The crucial difference is that we do

visibly what is essentially the compiler’s job: by unrolling the inheritances, we make visible all of
the modeling code, keeping it all in one piece.

You can see below the difference between GlmAttention  and LlamaAttention , with the
latter having been copied with minimal changes.

What is the consequence? When adding a model, we do not need to go over the entire modeling
file. The modular (left side above) is enough.

When AutoModel.from_pretrained(...)  is called, it is indeed the modeling (right side) that
is run, and all the tests run on the modeling code.

More importantly, the auto-generated modeling file is what users read to understand the code,

what they step through in their debuggers and what they hack for their needs.

What does that give us?

TL;DR: A small modular_*.py  declares reuse; the expanded modeling file stays visible and

unique  . Reviewers and contributors maintain the shard, not the repetition.

Next: the measurable effect on effective LOC and maintenance cost.

A maintainable control surface

The effect of modular can be measured in lines of code (LOC). If a model only has a modeling

file, we add its LOC count. However, if a model has a modular_*.py  and a corresponding
automatically generated modeling_*.py , we only count the LOC under the modular file. The

modeling code has no maintenance cost as it is strictly dependent on the modular file.

That gives an “effective LOC” curve: the 𝗺𝗮𝗶𝗻𝘁𝗲𝗻𝗮𝗻𝗰𝗲 𝘀𝘂𝗿𝗳𝗮𝗰𝗲.

Figure 1: Comparison of attention implementations between Llama and GLM, showing code reuse with

minimal modifications.



Measured on git history, raw modeling_*.py  grew at ~362 LOC/day before modular; counting

only modular shards yields ~25 LOC/day after — about 15× lower. The effective curve (blue line
below) represents the maintenance surface today: what maintainers actually read and review.

Less code to hand-maintain means fewer places to break. Naturally LOC is not a direct measure
of complexity, but they correlate in review effort and change risk.

The blue line (effective) is the sum of the red + green, whereas the yellow would have been the
progression without modular. We can see that the maintenance surface is essentially constant

(in LOC) since the implementation of modular . If you zoom in, you’ll notice there’s a sharp
drop near the end, it’s essentially due to us removing support for Jax and TensorFlow  library-

wide.

But this was not the only effort that allowed us to reduce maintenance load.

We recently underwent a deep refactor of the attention implementation. You’ve likely heard

about flash attention  and its several variants.

The attention computation itself happens at a lower level of abstraction than the model itself.

However, we were adding specific torch operations for each backend (sdpa, the several flash-
attention iterations, flex attention) but it isn’t a minimal user api  . Next section explains what

we do.

Evidence: effective (i.e., maintainable) LOC growth drops ~15× when counting shards instead of

expanded modeling files. Less code to read, fewer places to break.

↗

↗

2021 2022 2023 2024 2025
0

100k

200k

300k

400k

500k

600k

Year

Li
ne

s 
of

 C
od

e

2024-05-31 modular

Legend

effective modular modelingAll modelingIncluded

https://github.com/huggingface/transformers/commit/4df2529d79d75f44e70396df5888a32ffa02d61e#diff-60849db3e9922197854ef1cac92bf4aba08b5d7fd3fe6f3c16a3511e29e0eacc
https://github.com/huggingface/transformers/commit/4df2529d79d75f44e70396df5888a32ffa02d61e#diff-60849db3e9922197854ef1cac92bf4aba08b5d7fd3fe6f3c16a3511e29e0eacc
https://github.com/huggingface/transformers/commit/4df2529d79d75f44e70396df5888a32ffa02d61e#diff-60849db3e9922197854ef1cac92bf4aba08b5d7fd3fe6f3c16a3511e29e0eacc
https://huggingface.co/docs/text-generation-inference/en/conceptual/flash_attention
https://huggingface.co/docs/text-generation-inference/en/conceptual/flash_attention
https://huggingface.co/docs/text-generation-inference/en/conceptual/flash_attention


Next: how the attention interface stays standard without hiding semantics.

External Attention classes

The solution for the “attention abstraction problem” was to move to a standard
attention interface  that allows the following:

The naive implementation of attention, called “eager”, is available by default. We use a

Callable  called eager_attention_forward , which can run as long as the user has PyTorch
installed – which is a requirement any way.

Instead of using a class interface and a class hierarchy, we just moved to a function interface.
When a more complex attention implementation is needed, we use other Callables, including

much faster kernel bindings when available. The decision to use a different attention

implementation is based on the model configuration file we download from the Hub, and it can
also be overridden by the user.

This is a clear example that that we prefer an interface that is standard, but not abstract  . To
be completely precise, this is what the interface selection looks like in transformers code:

Having the attention interfaces functionalized allows to do dynamic switching of attentions as

well, increasing their hackability  . Another strength of the new attention interface is the
possibility to enforce specific kwargs, which are needed by kernel providers and other

dependencies.

Backend integrations sometimes require specific kwargs.

We know that kwargs are often a necessary evil that plagues tools with widespread

compatibility; and it is something we have aimed to reduce, and continue to reduce in order to
improve readability - with them, the current system is a minimal user api  .

We reduce that surface and document expectations; where flexibility is necessary, we plan to
use typing.Annotated  to convey shapes and invariants without constraining integrations.

Such an implementation could look like this in the future:

↗

attention_interface: Callable = eager_attention_forward1

if self.config._attn_implementation != "eager":2

    attention_interface = 

ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

3

https://huggingface.co/docs/transformers/en/attention_interface
https://huggingface.co/docs/transformers/en/attention_interface
https://huggingface.co/docs/transformers/en/attention_interface


Attention semantics remain in eager_attention_forward ; faster backends are opt-in via

config. We inform via types/annotations rather than enforce rigid kwargs, preserving

integrations.

Next: parallel partitioning is declared as a plan, not through model surgery.

Configurable Tensor Parallelism

If you’re not familiar with the different flavours of parallelism, I recommend checking out
this blog post  first, and of course a full dive into the ultra-scale playbook  is always

recommended.

The essential part is that, as the documentation states , when tensors get too large to fit on
a single GPU, they are sliced along a particular dimension and every slice is sent to a different

GPU.

Why does it matter?

Because we want to avoid code modifications that are unrelated to the model.

We choose to place the level of abstraction higher than the device placement: a matrix
multiplication - a nn.Linear  layer - should be always expressed in the same way, regardless

of how it is placed.

Hence, we want to touch the modeling code as little as possible  , and only modify it when

architectural changes are involved – not depending on the way you run it. For tensor parallelism,
we simply specify a tp_plan :

from typing import Annotated1

 2

MyModelOutputAnnotated = Annotated[MyModelOutput, "shape: (B, C, H, W)"]3

↗ ↗

↗

https://huggingface.co/blog/accelerate-nd-parallel
https://huggingface.co/blog/accelerate-nd-parallel
https://huggingface.co/blog/accelerate-nd-parallel
https://huggingface.co/spaces/nanotron/ultrascale-playbook
https://huggingface.co/spaces/nanotron/ultrascale-playbook
https://huggingface.co/spaces/nanotron/ultrascale-playbook
https://huggingface.co/docs/transformers/v4.56.2/perf_train_gpu_many#tensor-parallelism
https://huggingface.co/docs/transformers/v4.56.2/perf_train_gpu_many#tensor-parallelism
https://huggingface.co/docs/transformers/v4.56.2/perf_train_gpu_many#tensor-parallelism


The plan is written once, saved as part of the config and passed to .from_pretrained() . It

maps module name patterns to partitioning strategies. Strategies are resolved by the internal

ParallelInterface , which wires to sharding implementations ColwiseParallel ,

RowwiseParallel , packed variants, and so on.

The alternative would be to modify classes depending on supported types of parallelism.

The tp_plan  solution allows users to run the same model on a single GPU, or distribute it

using multiple processes per node, e.g. 4 GPUs:

torchrun --nproc-per-node 4 demo.py

Semantics stay in the model (a Linear stays a Linear), parallelization is orthogonal and declared
via strings: “colwise” splits columns of weights/bias across ranks; “rowwise” splits rows;

packed variants shard fused weights; The mapping keys accept glob patterns like

layers.*.mlp.down_proj  to target repeated submodules.

Parallelization is specified in the configuration ( tp_plan ), not through edits to Linear s. Glob

patterns target repeated blocks; modeling semantics stay intact.

# In the model's config (example: ERNIE 4.5-style decoder blocks)1

base_model_tp_plan = {2

    "layers.*.self_attn.q_proj": "colwise",3

    "layers.*.self_attn.k_proj": "colwise",4

    "layers.*.self_attn.v_proj": "colwise",5

    "layers.*.self_attn.o_proj": "rowwise",6

    "layers.*.mlp.gate_proj": "colwise",7

    "layers.*.mlp.up_proj":   "colwise",8

    "layers.*.mlp.down_proj": "rowwise",9

}10

 11

# Runtime12

import torch13

from transformers import AutoModelForCausalLM, AutoTokenizer14

 15

model_id = "your/model-or-local-checkpoint"16

model = AutoModelForCausalLM.from_pretrained( # <-- will automatically map 

to the plan defined above

17

    model_id, 18

    dtype=torch.bfloat16,19

)  20

tok = AutoTokenizer.from_pretrained(model_id)21

inputs = tok("Hello", return_tensors="pt").to(model.device)22

out = model(**inputs)23



Next: per-layer attention/caching schedules declared in config, not hardcoded.

Layers, attentions and caches

Following the same logic, the nature of attention and caching per layer of a model should not be
hardcoded. We should be able to specify in a configuration-based fashion how each layer is

implemented. Thus we define a mapping that can be then

and the configuration can be explicit about which attention type is in which layer. See, for
example, gpt-oss , which alternates sliding and full attention:

This is minimal  to implement on the user side, and allows to keep the modeling code
untouched. It is also easy to tweak.

Allowed layer types are explicit; schedules (e.g., sliding/full alternation) live in config. This keeps

the file readable and easy to tweak.

Next: speedups come from kernels that don’t change semantics.

Community Kernels

The same principle extends to normalization, activation, and other code paths. The model

defines semantics; a kernel defines how to execute them faster. We annotate the module to

ALLOWED_LAYER_TYPES = (1

    "full_attention",2

    "sliding_attention",3

    "chunked_attention",4

    "linear_attention",5

    ...6

)7

↗

  "layer_types": [1

    "sliding_attention",2

    "full_attention",3

    ...,4

    "sliding_attention",5

    "full_attention"6

  ],7

https://huggingface.co/openai/gpt-oss-120b/blob/main/config.json#L15
https://huggingface.co/openai/gpt-oss-120b/blob/main/config.json#L15
https://huggingface.co/openai/gpt-oss-120b/blob/main/config.json#L15


borrow a community‑provided forward, keeping a consistent public surface

This also opens another contribution path: GPU specialists can contribute optimized kernels to
the Kernels Hub , and have them immediately available to use in transformers  and other

libraries. You can check the kernel community blog post  to learn more about it!

Even more resources have been added, like the formidable kernel builder  with its connected

resources to help you build kernels with it  and with nix .

Models define semantics; kernels define how to run them faster. Use decorations to borrow

community forwards while keeping a consistent public surface.

Next: what modularity looks like across the repo.

A Modular State

With modular  transformers, we have a form of inheritance in our codebase. Some models
become standards, and model contributors are given the opportunity to define standards.

Pushing the boundaries of scientific knowledge can translate into the boundaries of engineering

if this effort is made, and we’re striving for it. It’s hard to conceptualize very large libraries and
how their components interact with each other, regardless of your cognitive abilities for

abstractions. So I want to take a look at the current state of modularity across the repository.
How many models are defined using components of others?

To get this graph, I use the heuristic of modular inheritance.

1. Does this model have a modular file?

2. In this modular file, what models, configurations and processings are imported?

3. Recurse through the model list that way.

So what do we see?

(Graph reading guide: nodes are models; edges are modular imports).

@use_kernel_forward_from_hub("RMSNorm")1

class GlmRMSNorm(nn.Module):2

    ...3

↗

↗

↗

↗ ↗

https://huggingface.co/kernels-community
https://huggingface.co/kernels-community
https://huggingface.co/kernels-community
https://huggingface.co/blog/hello-hf-kernels
https://huggingface.co/blog/hello-hf-kernels
https://huggingface.co/blog/hello-hf-kernels
https://github.com/huggingface/kernel-builder
https://github.com/huggingface/kernel-builder
https://github.com/huggingface/kernel-builder
https://github.com/huggingface/kernel-builder/blob/main/docs/writing-kernels.md
https://github.com/huggingface/kernel-builder/blob/main/docs/writing-kernels.md
https://github.com/huggingface/kernel-builder/blob/main/docs/writing-kernels.md
https://github.com/huggingface/kernel-builder/blob/main/docs/nix.md
https://github.com/huggingface/kernel-builder/blob/main/docs/nix.md
https://github.com/huggingface/kernel-builder/blob/main/docs/nix.md


Check out the full viewer here  (tab “dependency graph”, hit “build graph”) for better

manipulation and exploration.

Let’s walk through some sections of this graph together. First, Llama is a basis and an

influence for many models, and it is very visible.

↗

[Interactive content - view online]

Figure 2: Llama as a central model influencing many other models in the dependency graph.

https://huggingface.co/spaces/Molbap/transformers-modular-refactor
https://huggingface.co/spaces/Molbap/transformers-modular-refactor
https://huggingface.co/spaces/Molbap/transformers-modular-refactor


The models linked sometimes pull components from other models than llama  of course.

Radically different architectures such as mamba have spawned their own dependency subgraph.

Audio models form sparser archipelagos, see for instance wav2vec2 which is a significant basis

for a dozen of them.

In the case of VLMs which have massively grown in popularity since 2024, there’s far too many
vision-based architectures that are not yet defined as modulars of other existing archs. In other

words, there is no strong reference point in terms of software for vision models.

As you can see, there is a small DETR  island:

Figure 3: Cluster of audio architectures based on wav2vec2, forming a specialized archipelago.



There is also a little llava pocket, and so on, but it’s not comparable to the centrality observed

for llama.

Another problem is, this visualization only shows modular  models. Several models still do NOT

have a modular file. If we zoom out significantly, we can see them, the red nodes are models

that do not have a modular file yet.

Figure 4: Small DETR archipelago for vision models, less centralized than Llama for text.



Hence the next question, and how do we identify modularisable models?

Llama-lineage is a hub; several VLMs remain islands — engineering opportunity for shared

parents. Next: timeline + similarity signals to spot modularisable candidates.

Many models, but not enough yet, are alike

Next, I looked into Jaccard similarity, which we use to measure set differences. I know that

code is more than a set of characters stringed together. I also used code embedding models to
check out code similarities, and it yielded better results, for the needs of this blog post I will

stick to Jaccard index.

Figure 5: Overview showing red nodes (models without modular files) to be modularized.



It is interesting, for that, to look at when we deployed this modular logic and what was its

rippling effect on the library. You can check the larger space  to play around, but the gist is:
adding modular allowed to connect more and more models to solid reference points. We have a

lot of gaps to fill in still.

Zoom out below - it’s full of models. You can click on a node to see its connections better, or

use the text box to search for a model. You can use the full viewer  (tab “timeline”, hit “build

timeline”) for better exploration.

Let’s look at a few highly connected models. Let’s start by the foundational work of Llava .

You see that llava_video  is a red node, connected by a red edge to llava : it’s a candidate,

something that we can likely remodularize, not touching the actual model  but being much

more readable with DRY*  .

↗

↗

↗

[Interactive content - view online]

Figure 6: LLaVA and its variants in the timeline, with llava_video as a candidate for modularization.

https://huggingface.co/spaces/Molbap/transformers-modular-refactor
https://huggingface.co/spaces/Molbap/transformers-modular-refactor
https://huggingface.co/spaces/Molbap/transformers-modular-refactor
https://huggingface.co/spaces/Molbap/transformers-modular-refactor
https://huggingface.co/spaces/Molbap/transformers-modular-refactor
https://huggingface.co/spaces/Molbap/transformers-modular-refactor
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2304.08485


The same can be identified with the classical encoders family, centered on BERT :

Here roberta , xlm_roberta , ernie  are modular s of BERT, while models like

mobilebert  are likely candidates.

Similarity metrics (Jaccard index or embeddings) surfaces likely parents; the timeline shows

consolidation after modular landed. Red nodes/edges = candidates (e.g., llava_video  →
llava ) for refactors that preserve behavior.

Next: concrete VLM choices that avoid leaky abstractions.

VLM improvements, avoiding abstraction

We don’t yet have a cookbook for common VLM patterns (image token scatter, multi‑tower

encoders, cross‑attention bridges). This is one of the main improvement points where we can
work.

For instance, we thought of abstracting away the mixing of inputs_embeds , the tensor fed into

an LLM decoder in 95% of the existing VLMs. It would have looked like something like

Figure 7: Family of classical encoders centered on BERT, with several models already modularized.



But this is not an abstraction  . Embedding mixin is part of the model, removing it would break

it. A user opening modeling_qwen2.5_vl  (check out the Qwen2.5VL collection ) should
not have to go to another file to understand how it works.

What is the current state of these “abstractions” across the codebase? You will see all the
imports around a modeling file, here Gemma3n .

As you can see, the GenerationMixin  node is already very heavy. It encompasses all of the
utilities around .generate , it is second only to nn.Module . That means every decision we

make to abstract something else has to be extremely careful.

The following Pull request to standardize placeholder masking  is a good example of what
kind of changes are acceptable. In a VLM, we always need to insert embeddings from various

encoders at various positions, so we can have a function to do it. For Qwen2 VL, for instance, it
will look like this:

class InputsEmbeddingMixerMixin(nn.Module):1

    #2

↗ ↗

↗

↗

Figure 8: Gemma3n import graph showing dependency complexity, with GenerationMixin very central.

https://github.com/huggingface/transformers/blob/b3bd815786c36f4e6c3791fae0a96cac86658b32/src/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py#L1358
https://github.com/huggingface/transformers/blob/b3bd815786c36f4e6c3791fae0a96cac86658b32/src/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py#L1358
https://github.com/huggingface/transformers/blob/b3bd815786c36f4e6c3791fae0a96cac86658b32/src/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py#L1358
https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5
https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5
https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5
https://huggingface.co/google/gemma-3n-E4B-it
https://huggingface.co/google/gemma-3n-E4B-it
https://huggingface.co/google/gemma-3n-E4B-it
https://github.com/huggingface/transformers/pull/39777
https://github.com/huggingface/transformers/pull/39777
https://github.com/huggingface/transformers/pull/39777


    def get_placeholder_mask(1

        self,2

        input_ids: torch.LongTensor,3

        inputs_embeds: torch.FloatTensor,4

        image_features: torch.FloatTensor = None,5

        video_features: torch.FloatTensor = None,6

    ):7

        """8

        Obtains multimodal placeholdr mask from `input_ids` or 

`inputs_embeds`, and checks that the placeholder token count is

9

        equal to the length of multimodal features. If the lengths are 

different, an error is raised.

10

        """11

        if input_ids is None:12

            special_image_mask = inputs_embeds == 

self.get_input_embeddings()(

13

                torch.tensor(self.config.image_token_id, dtype=torch.long, 

device=inputs_embeds.device)

14

            )15

            special_image_mask = special_image_mask.all(-1)16

            special_video_mask = inputs_embeds == 

self.get_input_embeddings()(

17

                torch.tensor(self.config.video_token_id, dtype=torch.long, 

device=inputs_embeds.device)

18

            )19

            special_video_mask = special_video_mask.all(-1)20

        else:21

            special_image_mask = input_ids == self.config.image_token_id22

            special_video_mask = input_ids == self.config.video_token_id23

 24

        n_image_tokens = special_image_mask.sum()25

        special_image_mask = 

special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds

.device)

26

        if image_features is not None and 

inputs_embeds[special_image_mask].numel() != image_features.numel():

27

            raise ValueError(28

                f"Image features and image tokens do not match: tokens: 

{n_image_tokens}, features {image_features.shape[0]}"

29

            )30

 31

        n_video_tokens = special_video_mask.sum()32

        special_video_mask = 

special_video_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds

.device)

33

        if video_features is not None and 

inputs_embeds[special_video_mask].numel() != video_features.numel():

34

            raise ValueError(35



But this is within the modeling file, not in the PreTrainedModel  base class. It does not move

away from it, because it’d break the One model, one file tenet.

What do we conclude? Going forward, we should aim for VLMs to have a form of centrality

similar to that of Llama  for text-only models. This centrality should not be achieved at the cost
of abstracting and hiding away crucial inner workings of said models.

Keep VLM embedding mix in the modeling file (semantics), standardize safe helpers (e.g.,

placeholder masking), don’t migrate behavior to PreTrainedModel . Next: pipeline-level wins

that came from PyTorch-first choices (fast processors).

On image processing and processors

Deciding to become a torch -first library meant relieving a tremendous amount of support for

jax  and TensorFlow , and it also meant that we could be more lenient about the amount of

torch-dependent utilities that we were able to accept. One of these is the fast processing of
images. Where inputs were once minimally assumed to be ndarrays, enforcing native torch

and torchvision  inputs allowed us to massively improve processing speed for each model.

The gains in performance are immense, up to 20x speedup for most models when using

compiled torchvision ops. Furthermore, let us run the whole pipeline solely on GPU.

                f"Videos features and video tokens do not match: tokens: 

{n_video_tokens}, features {video_features.shape[0]}"

36

            )37

 38

        return special_image_mask, special_video_mask39



PyTorch-first lets processors assume torch/torchvision and run the whole pipeline on GPU; big

per-model speedups.

Next: how this lowers friction for contributors and downstream users.

Figure 9: Performance gains of fast image processors, up to 20x acceleration with compiled torchvision.



Reduce barrier to entry/contribution

This is an overall objective: there’s no transformers  without its community.

Having a framework means forcing users into it. It restrains flexibility and creativity, which are

the fertile soil for new ideas to grow.

Among the most valuable contributions to transformers  is of course the addition of new

models. Recently, OpenAI added GPT-OSS , which prompted the addition of many new
features to the library in order to support their model .

A second one is the ability to fine-tune and pipeline these models into many other softwares.

Check here on the hub how many finetunes are registered for gpt-oss 120b , despite its size!

The shape of a contribution: add a model (or variant) with a small modular shard; the community

and serving stacks pick it up immediately. Popularity trends (encoders/embeddings) guide where

we invest.

Next: power tools enabled by a consistent API.

Models popularity

Talking about dependencies, we can take a look at the number of downloads as a measure of
popularity. One thing we see is the prominence of encoders, despite the apparent prevalence of

decoder LLMs. The reason is that encoders are used to generate embeddings, which have

multiple downstream uses. Just check out EmbeddingGemma  for a modern recap. Hence, it
is vital to keep the encoders portion of the library viable, usable, fine-tunable.

↗

↗

↗

↗

https://huggingface.co/blog/welcome-openai-gpt-oss
https://huggingface.co/blog/welcome-openai-gpt-oss
https://huggingface.co/blog/welcome-openai-gpt-oss
https://huggingface.co/openai/gpt-oss-120b
https://huggingface.co/openai/gpt-oss-120b
https://huggingface.co/openai/gpt-oss-120b
https://huggingface.co/models?other=base_model:finetune:openai/gpt-oss-120b
https://huggingface.co/models?other=base_model:finetune:openai/gpt-oss-120b
https://huggingface.co/models?other=base_model:finetune:openai/gpt-oss-120b
https://huggingface.co/blog/embeddinggemma
https://huggingface.co/blog/embeddinggemma
https://huggingface.co/blog/embeddinggemma


Metric

Sort by Downloads





openai/clip-vit-large-patch14

openai/clip-vit-base-patch32

timm/resnet50.a1_in1k

pyannote/wespeaker-voxceleb-resnet34-LM

openai/clip-vit-large-patch14-336

openai/clip-vit-base-patch16

hustvl/vitmatte-small-composition-1k

microsoft/table-transformer-detection

google/vit-base-patch16-224

distilbert/distilbert-base-uncased-finetuned-sst-2-english

Qwen/Qwen2.5-VL-7B-Instruct

openai/whisper-large-v3-turbo

patrickjohncyh/fashion-clip

nateraw/vit-age-classifier

timm/resnet18.a1_in1k

google/vit-base-patch16-224-in21k

google/siglip-so400m-patch14-384

Qwen/Qwen2.5-VL-3B-Instruct

MahmoudAshraf/mms-300m-1130-forced-aligner

laion/CLIP-ViT-bigG-14-laion2B-39B-b160k

openai/whisper-large-v3

Salesforce/blip-image-captioning-base

google/siglip2-so400m-patch16-naflex

lpiccinelli/unidepth-v2-vitl14

CIDAS/clipseg-rd64-refined

Salesforce/blip-image-captioning-large

openai/whisper-medium

google/gemma-3-1b-it

timm/vit_large_patch14_reg4_dinov2.lvd142m

facebook/dinov2-base

openai/whisper-base.en

laion/CLIP-ViT-H-14-laion2B-s32B-b79K

dbmdz/bert-large-cased-finetuned-conll03-english

microsoft/layoutlmv3-base

facebook/musicgen-medium

microsoft/resnet-50

microsoft/table-transformer-structure-recognition

facebook/dinov2-small

OpenGVLab/InternVL3-78B

openai/whisper-small

AdamCodd/vit-base-nsfw-detector

google/gemma-3-4b-it

Qwen/Qwen2-VL-2B-Instruct

apple/mobilevit-small



As the codebase grows, we need to maintain it in coordination with our friend
Sentence Transformers codebase . Retrieval use-cases, smart databases, FAISS-based

indexing rely on it, and thus indirectly on transformers.

In that regard, we DO want to be a modular toolbox, being minimal  enough and well
documented enough so any ML/AI developer can use transformers  without having to think

about it. We aim to reduce the cognitive load brought about by model development, not
increase it.

So, how do these design choices, these “tenets” influence development of models and overall

usage of transformers?

Encoders remain critical for embeddings and retrieval; maintaining them well benefits the

broader ecosystem (e.g., Sentence Transformers, FAISS).

Next: dev tools that leverage unified attention APIs and PyTorch-only internals.

A surgical toolbox for model development

Transformers provides many tools that can help you add a new architecture, understand the

inner workings of a model, as well as the library itself.

Attention visualisation

All models have the same API for attention computation, thanks to the externalisation of

attention classes.

This uniformity allows us to build cool tools to visualize the inner workings of the attention

mechanism.

↗

0 5M 10M 15M 20M

pp

google/vit-hybrid-base-bit-384

Salesforce/blip2-opt-2.7b

facebook/dinov2-large

microsoft/table-transformer-structure-recognition-v1.1-all

https://huggingface.co/sentence-transformers
https://huggingface.co/sentence-transformers
https://huggingface.co/sentence-transformers


One particular piece of machinery is the attention mask . Here you see the famous

bidirectional attention pattern for the whole prefix (text + image) in PaliGemma and all
Gemma2+ models, contrasting with the usual “causal-only” models.

Uniform attention APIs enable cross-model diagnostics (e.g., PaliGemma prefix bidirectionality vs

causal).

Next: whole-model tracing for ports and regressions.

Logging entire model activations

attention-mask-visualizer

  ATTN MASK — GPT-2 (causal)
  Tokens: [The, cat, sat, on, the, mat]
  Legend: x = can attend, . = masked (future)
  
           The cat sat on  the mat
  The       x
  cat       x   x
  sat       x   x   x
  on        x   x   x   x
  the       x   x   x   x   x
  mat       x   x   x   x   x   x
  
  
  ATTN MASK — PaliGemma-style (bidirectional prefix + causal suffix)
  Prefix:  [<i0> <i1> <i2> <i3> <i4> What is this]
  Suffix:  [A great duck]
  Legend: ✓ = can attend, ✗ = cannot

             <i0><i1><i2><i3><i4> What  is  this  |   A   great  duck
  <i0>        ✓   ✓   ✓   ✓   ✓    ✓     ✓    ✓        ✗     ✗      ✗
  <i1>        ✓   ✓   ✓   ✓   ✓    ✓     ✓    ✓        ✗     ✗      ✗
  <i2>        ✓   ✓   ✓   ✓   ✓    ✓     ✓    ✓        ✗     ✗      ✗
  <i3>        ✓   ✓   ✓   ✓   ✓    ✓     ✓    ✓        ✗     ✗      ✗
  <i4>        ✓   ✓   ✓   ✓   ✓    ✓     ✓    ✓        ✗     ✗      ✗
  What        ✓   ✓   ✓   ✓   ✓    ✓     ✓    ✓        ✗     ✗      ✗
  is          ✓   ✓   ✓   ✓   ✓    ✓     ✓    ✓        ✗     ✗      ✗
  this        ✓   ✓   ✓   ✓   ✓    ✓     ✓    ✓        ✗     ✗      ✗
  --------------------------------------------------------------------
  A           ✓   ✓   ✓   ✓   ✓    ✓     ✓    ✓        ✓     ✗      ✗
  great       ✓   ✓   ✓   ✓   ✓    ✓     ✓    ✓        ✓     ✓      ✗
  duck        ✓   ✓   ✓   ✓   ✓    ✓     ✓    ✓        ✓     ✓      ✓
      



Because everything is PyTorch, we can easily debug any model  when we want to add it to

transformers. We now have a power-user tool for porting or adding models, that wraps a forward
pass, intercepts every submodule call, and logs shapes, dtypes, and sample statistics of

inputs/outputs to nested JSON.

It just works with PyTorch models and is especially useful when aligning outputs with a

reference implementation, to match our Source of Truth guideline  .

Forward interception and nested JSON logging align ports to reference implementations,

reinforcing “Source of Truth.”

Next: CUDA warmup reduces load-time without touching modeling semantics.

Cooking faster CUDA warmups

Having a clean external API allows us to work on the true inner workings of transformers  . One

of a few recent additions is the CUDA warmup via caching_allocator_warmup , which
dramatically improves loading times by pre-allocating GPU memory to avoid malloc bottlenecks

during model loading. It can achieve a 7x speedup factor for an 8B model, or 6x for a 32B one,
as you can check in the PR !

↗

↗

Figure 10: Model debugger interface intercepting calls and logging statistics in nested JSON.

https://huggingface.co/docs/transformers/internal/model_debugging_utils
https://huggingface.co/docs/transformers/internal/model_debugging_utils
https://huggingface.co/docs/transformers/internal/model_debugging_utils
https://github.com/huggingface/transformers/pull/36380
https://github.com/huggingface/transformers/pull/36380
https://github.com/huggingface/transformers/pull/36380


Mem allocation patterns during model loading



Start Animation  Reset

0.00s

Layers loaded: 0/10

Individual Allocations:
Each model layer triggers a separate cudaMalloc() call, creating memory fragmentation and
allocation overhead.

📦 Grey "malloc" = Memory allocation overhead
✅ Green "data" = Actual layer data loading

0.00s

Layers loaded: 0/10

Pre-allocated Memory Poola Loading



It’s hard to overstate how much of a lifesaver that is when you’re trying to load a model as fast

as possible, as it’s the narrowest bottleneck for your iteration speed.

Pre-allocating GPU memory removes malloc spikes (e.g., 7× for 8B, 6× for 32B in the referenced

PR).

Next: consistent interfaces allow transformers-serve.

Transformers-serve and continuous batching

Having all these models readily available and sharing the same interface allows us to
implement transformers-serve, a CLI tool to expose models through a standard OpenAI http API.

transformers-serve  uses continuous batching (see this PR  and also this one ) for
better GPU utilization, and is very much linked to the great work of vLLM with the

paged attention kernel  – a further justification of external kernels.

transformers-serve  is not meant for user-facing production services, tools like vLLM or
SGLang are super optimized for that, but it’s useful for several use cases:

Quickly verify that your model is compatible with continuous batching and paged attention.

Run ad-hoc vibe tests on any model, without worrying to deploy anything.

transformers serve1

 2

curl -X POST http://localhost:8000/v1/chat/completions \3

-H "Content-Type: application/json" \4

-d '{"messages": [{"role": "system", "content": "hello"}], "temperature": 

0.9, "max_tokens": 1000, "stream": true, "model": "Qwen/Qwen2.5-0.5B-

Instruct"}'

5

↗ ↗

Pre-allocated Pool:
The warmup function calculates total memory needed and makes ONE large allocation.
Subsequent layers load directly into this pool, eliminating malloc overhead.

 Container = Single large malloc (warmup)
 Progress bar = Layer data loading (no malloc needed)

https://github.com/huggingface/transformers/pull/38085
https://github.com/huggingface/transformers/pull/38085
https://github.com/huggingface/transformers/pull/38085
https://github.com/huggingface/transformers/pull/40426
https://github.com/huggingface/transformers/pull/40426
https://github.com/huggingface/transformers/pull/40426


Run evaluations efficiently, again without having to spend a lot of time engineering your

infrastructure.

For model deployment, check Inference Providers  or roll your solution using any of the

excellent serving libraries.

OpenAI-compatible surface + continuous batching; kernels/backends slot in because the

modeling API stayed stable.

Next: reuse across vLLM/SGLang relies on the same consistency.

Community reusability

The transformers-serve CLI is built on transformers, for sure, but the library is made first and
foremost to be reused at large by the open-source ecosystem.

Adding a model to transformers means:

having it immediately available to the community

having it immediately usable in vLLM, SGLang , and so on without additional code. In the

case of vLLM, transformers was added as a backend to run models on vLLM, which
optimizes throughput/latency on top of existing transformers architectures

as seen in this great vLLM x HF blog post.

being the reference code for implementations in MLX, llama.cpp and other libraries.

This further cements the need for a consistent public surface  : we are a backend and a

reference, and there’s more software than us to handle serving. At the time of writing, more
effort is done in that direction. We already have compatible configs for VLMs for vLLM (say that

three times fast), check here for GLM4 video support , and here for MoE support , for
instance.

Being a good backend consumer requires a consistent public surface; modular shards and

configs make that stability practical.

Next: what changes in v5 without breaking the promise of visible semantics.

↗

↗

↗

↗ ↗

https://huggingface.co/docs/inference-providers/en/index
https://huggingface.co/docs/inference-providers/en/index
https://huggingface.co/docs/inference-providers/en/index
https://huggingface.co/blog/transformers-backend-sglang
https://huggingface.co/blog/transformers-backend-sglang
https://huggingface.co/blog/transformers-backend-sglang
https://blog.vllm.ai/2025/04/11/transformers-backend.html
https://blog.vllm.ai/2025/04/11/transformers-backend.html
https://blog.vllm.ai/2025/04/11/transformers-backend.html
https://github.com/huggingface/transformers/pull/40696/files
https://github.com/huggingface/transformers/pull/40696/files
https://github.com/huggingface/transformers/pull/40696/files
https://github.com/huggingface/transformers/pull/40132
https://github.com/huggingface/transformers/pull/40132
https://github.com/huggingface/transformers/pull/40132


A Pact with the Community and what is coming next

The next major version of transformers  is just around the corner (and will have another blog

post to its name when it comes out). When v5 is released, we aim to keep backwards

compatibility as solid as possible. The changes we make now are in service of that goal.

We will lean further into a modular toolbox, not a framework. You should not be forced to rewrite

modeling code. It’s better when a model can inherit from PreTrainedModel  and opt into
Tensor Parallel, from_pretrained , sharding, push_to_hub , loss plumbing, and external

stacks like PEFT/TRL/SGLang/vLLM.

We write this to make our design philosophy legible. Transformers is built by thousands of
contributors, but it only stays usable if its core principles are explicit and upheld. These tenets

are our pact with you: they ensure that whether you are shipping a new model, contributing an
optimized kernel, or simply debugging a forward pass, the code remains transparent and

hackable.

This is a living document, not a stone tablet. Tell us where these tenets fall short or should
evolve next. We’ll keep working, and we’ll be here to share the journey with you all.

Citation

For attribution, cite this work as

Pablo Montalvo, Lysandre Debut, Pedro Cuenca, Yoni Gozlan (2025). "Maintain the unmaintainable: 
1M python loc, 400+ models".

BibTeX citation

@misc{montalvo2025_maintain_the_unmaintaina,
  title={Maintain the unmaintainable: 1M python loc, 400+ models},
  author={Pablo Montalvo and Lysandre Debut and Pedro Cuenca and Yoni Gozlan},
  year={2025},
  
}

Acknowledgements
Special thanks to all the reviewers on this! Vaibhav Srivastav for his thoroughness, Cyril Vallez for his eagle eye, Yoni

Gozlan (also for his excellent work on fast image processors), Arthur Zucker for his guidance, and of course the

wonderful Thibaud Frere for designing this template and helping me out with it!

https://huggingface.co/reach-vb
https://huggingface.co/cyrilvallez
https://huggingface.co/yonigozlan
https://huggingface.co/yonigozlan
https://huggingface.co/ArthurZ
https://huggingface.co/tfrere


Most importantly: thanks to the entire Open-Source community, sincerely.


